Comparing Renewable Energy Options for Vermont and the Northeast

Dr. Ben Luce Asst. Prof. of Physics, Lyndon State College ben.luce@lyndonstate.edu

New Mexico – The Heart of the *Sunny* Southwest

Los Alamos National Laboratory, File via AP

CONLS CENTER FOR NONLINEAR STUDIES

Carbon Dioxide Concentration

New Mexico Coalition For Clean Affordable Energy

New Mexico Coalition For Clean Affordable Energy

2004 - Governor Richardson signs the NM Renewable Energy Standard

2006 - Governor Richardson signs the NM Solar Tax Credit

New Mexico Clean Energy Legislation

- State Tax Incentives for Wind
- Renewable Energy Standard
- Solar Tax Credit
- Enhanced Solar Rights
- State Tax Incentives for Concentrating Solar
- Expanded Net-metering
- Feed-in Incentives for PV (RECS buyback program)

Why Compare Renewable Energy Options?

- There are vast differences between resources and technologies in terms of:
 - Resource potentials
 - Costs
 - Impacts to people and the environment
- Money and political will for RE are in meager supply in the US in general:
 - Prioritizing the wrong renewable energy sources is potentially disastrous for efforts to mitigate climate change.

Comparing Wind Power and Solar Power Resources

- Use NREL data
- Look Nationally, Eastern US, and Regionally

Wind Energy Physics 101

- Wind power potential is proportional to the *cube* of the wind speed:
 - > Power/Area = Kinetic energy density $(\frac{1}{2}\rho v^2)$ x wind speed (v)
 - Therefore: 2x Speed means 8x Power
 - Good Wind Sites Need Very High Average Wind Speeds

United States - Annual Average Wind Speed at 80 m

NREL Solar Resource Estimates: http://www.nrel.gov/docs/fy12osti/51946.pdf

U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis

Anthony Lopez, Billy Roberts, Donna Heimiller, Nate Blair, and Gian Porro

Relative Ranking of State Wind Resources

Source: www.windpoweringamerica.gov (see previous slide)

Iowa vs. New Hampshire

Onshore Eastern Wind Resources

• As estimated by DOE, the wind potential of the best Eastern US states, in peak gigawatts (GW):

– New York:	26 GW
– Maine :	11 GW
– Pennsylvania:	3 GW
– Vermont:	3 GW
 New Hampshire: 	2 GW
– Virginia:	2 GW
 West Virginia: 	2 GW
– Maryland:	1 GW
– MA:	1 GW

• Total: **51 GW (50% in NY)**

Effective Onshore Wind Power Capacity of the *Entire* Eastern US

- Assume *all* 52 gigawatts are realized
- Effective Wind Capacity: .3*51 GW = 15.3 GW
- Current average US consumption ≈ 470 GW
- Potential average onshore Eastern wind penetration into *current* US load:

(15.3 GW/470 GW) x 100% \approx 3%

- Percentage of Eastern Demand ≈ 7%
- Real Potential is likely closer to 1%

These NREL estimates must be considered as gross *upper bounds* on the real onshore wind potential in the East:

Myriad local siting and cost issues were not included: The real implications of achieving these levels of wind require extensive site-specific study. (NREL should have, but failed, to point this out clearly).

Actual real potential in the Northeast:

~2 gigawatts?

~ 5 gigawatts?

~ 10 gigawatts?

Future NE Wind Targets

- Most discussions of future wind in the NE have not exceeded about 5 GW:
 - About 80 Lowell wind projects

"Capacity Factor" of a Generation Source

Capacity Factor = $\frac{\text{Actual Annual Energy Produced}}{\text{Energy Produced under}\frac{24}{7}\text{Peak Operation}}$

- "Good Wind Sites": CF > .33
- Actual for Northeast Wind: CF < .25?
 - Wind power in the Northeast likely has real capacity factors well below those projected by developers to date.
- Photovoltaics: CF ~ .14
- Other Considerations:
 - Correlation with Seasonal Demand Curve
 - Correlation with Daily Demand Curve
- Solar has a lower capacity factor than wind, but is much better correlated with both the daily and seasonal demand curves. ²⁶

Fraction of Demand Displaced With 5 Gigawatts of Wind?

- NREL Data assumes CF ~ .3
- 5 gigawatts x .3= 1.5 gigawatts
 - Less than 3% of current peak demand
 - Less than 6% of average demand

Data Source: Energy Information Administration, "Today in Energy", July 12, 2012: <u>http://www.eia.gov/todayinenergy/detail.cfm?id=7070</u>

Conclusions for Ridgeline Wind Power Resources in the Northeast

- Ridgeline wind power cannot even approach being a significant energy source in the Northeast unless the resource is developed to an extreme extent, that is, using most of the high ridges in the region.
- Even with extreme development, its contribution will be modest at best.

Scale and Flexibility of Solar Resources

 The usable solar resource is extremely large, partially because the raw resource exists everywhere, and partially because the technology is completely scalable.

-10 kw Rooftop Scale

1-10 kw Backyard Scale

10 kw – MW Scale

Onshore Eastern *Rooftop* **Solar Resources**

• As estimated by DOE:

Tot	al:	323 GW
-	West Virginia	4 GW
—	Virginia	19 GW
-	Vermont	1 GW
_	Tennessee	16 GW
-	South Carolina	12 GW
-	Rhode Island	2 GW
-	Pennsylvania	20 GW
-	Ohio	27 GW
-	North Carolina	23 GW
—	New York	25 GW
—	New Jersey	14 GW
_	New Hampshire:	2 GW
_	Missouri	13 GW
_	Massachusetts	10 GW
_	Maryland	13 GW
—	Maine	2 GW
_	Louisiana	12 GW
_	Kentucky	11 GW
_	Georgia	25 GW
_	Florida	49 GW
_	Dist. of Col.	2 GW
_	Delaware	2 GW
_	Connecticut	6 GW
_	Alabama	13 GW
	-	

Even just rooftop solar potential greatly exceeds onshore wind potential in the Eastern US.

Onshore wind in the Southeast is also completely negligible.

Onshore Eastern Urban Utility-Scale Solar Resources

• As estimated by DOE:

Tot	al:	434 GW
—	West Virginia	2 GW
—	Virginia	16 GW
—	Vermont	1 GW
—	Tennessee	29 GW
—	South Carolina	19 GW
_	Rhode Island	1 GW
—	Pennsylvania	36 GW
—	Ohio	57 GW
—	North Carolina	38 GW
_	New York	33 GW
_	New Jersey	25 GW
_	New Hampshire:	2 GW
_	Missouri	18 GW
_	Massachusetts	11 GW
_	Maryland	18 GW
_	Maine	2 GW
_	Louisiana	32 GW
_	Kentucky	16 GW
_	Georgia	24 GW
_	Florida	40 GW
_	Dist. of Col.	0 GW
_	Delaware	9 GW
_	Connecticut	5 GW
_	Alabama	20 GW

•

Onshore Eastern Rural Utility-Scale Solar Resources

• As estimated by DOE:

_	Alabama	2115 GW
_	Connecticut	12 GW
_	Delaware	167 GW
_	Dist. of Col.	0 GW
_	Florida	2813 GW
_	Georgia	3088 GW
_	Kentucky	1119 GW
_	Louisiana	2394 GW
_	Maine	659 GW
_	Maryland	373 GW
_	Massachusetts	52 GW
_	Missouri	3157 GW
_	New Hampshire:	36 GW
_	New Jersey	251 GW
_	New York	926 GW
—	North Carolina	2347 GW
—	Ohio	2396
_	Pennsylvania	357 GW
_	Rhode Island	9 GW
—	South Carolina	1555 GW
—	Tennessee	1267 GW
—	Vermont	35 GW
—	Virginia	19 GW
—	West Virginia	4 GW
_		

Solar as a whole utterly dwarfs wind potential in the Eastern US.

• Total:

25,151 GW

Northeast Solar Resources: Rooftop + Urban + Rural

• As estimated by DOE:

– Maine	2 + 2 + 659 GW
 Massachusetts 	10 + 11 + 52 GW
 New Hampshire: 	2 + 2 + 36 GW
 New Jersey 	14 + 25 + 251 GW
– New York	25+33 + 926 GW
– Pennsylvania	20+36 + 357 GW
 Rhode Island 	2+ 1 + 9 GW
– Vermont	1+ 1 + 35 GW

Solar utterly dwarfs wind potential in the NE as well.

Even just rooftop solar potential in the NE (76 GW) significantly exceeds the likely onshore wind potential in the NE.

- Total: 2512 **GW**
- Even at a 10% capacity factor, this is equivalent to more than 250 GW of conventional capacity.

The Economics of Wind and Solar

Cost Trend of Wind Power (Nationally)

Solar Power Cost Trend

Figure 3.7 Global, average PV module prices, all PV technologies, 1984-2010 (Mints 2011)

- Department of Energy's Solar Technologies Market Report
- http://www.nrel.gov/docs/fy12osti/51847.pdf

Data Source: EIA, Levelized Cost of New Generation Resources in the Annual Energy Outlook 2013 (as quoted on AWEA's website)

Additional Transmission Costs for Eastern Wind Power

- The Northeast Grid is already fairly congested
- According to Gordon van Welie, president and chief executive officer of ISO New England Inc: "A conservative goal for 5,500 megawatts of wind power and 3,000 megawatts of hydro power through 2030 would carry transmission costs of between \$7 billion and \$12 billion."
 - From: "New England grid chief: Cooperate on wind power", by David Sharp, Associated Press Writer, August 16, 2010.
- 4000+ miles of new transmission lines

Summary of Wind vs. Solar Cost

- Costs of solar and ridgeline wind are now roughly in the same ballpark, assuming transmission costs for wind are minimal.
- If transmission costs for a large build-out of wind are included, its difficult to see how wind could be competitive with solar.
- Solar technology is potentially much more susceptible to price reduction through innovation and manufacturing scale up.

Impact Summary

- Topographical Impacts
- Hydrological Impacts
- Habitat Fragmentation & Loss
- Impacts to birds and bats
- Noise Impacts
- Aesthetic Impacts:
 - Ecotourism, etc
 - Environmental valuing of the region
- Impacts to the Social Fabric of local communities
- Implications for the effectiveness of and public support for renewable energy investments

Overall Conclusions

- There is no justification from either a resource or economic point of view to install ridgeline wind projects for the sake of mitigating climate change.
- Continued large investment in ridgeline wind in the Northeast will likely cripple the nearterm investment in, and long-term success, of much more viable solutions.

